RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FOURTH SEMESTER EXAMINATION, MAY 2023

SECOND YEAR [BATCH 2021-24]

Date : 23/05/2023 Time : 11 am - 1 pm

ECONOMICS [Honours] Paper : CC8

Full Marks: 50

Answer any five from the following questions:			
1.	a) b) c)	State and explain the reasons behind having a random error component in a simple linear regression model. State and explain the assumptions of Classical Linear regression model. Specify the set of assumption(s) required for estimation and hypothesis testing.	[4+5+1]
2.	a) b)	Explain why the coefficient of determination (R^2) (in case of linear regression with intercept) increases with the increase of the number of regressors? Explain why you can not use Conventional R^2 in case of linear regression model without intercept?	[5+5]
3.	a) b)	You obtained the following regression result: $Y_i = 50 - 20 x_i$, $R^2 = 0.5$ (2) The figure in the bracket is the standard error. Find out the sample size (<i>n</i>) underlying the result. Prove that the coefficient of determination in case of simple linear regression (with intercept) is the square of correlation coefficient between dependent and independent variable.	[5+5]
4.	a) b) c)	Explain the concept of autocorrelation. Explain the Durbin-Watson test for detecting autocorrelation in a regression model. State the limitations of the Durbin-Watson test.	[2+5+3]
5.	a) b) c)	Explain the concept of heteroscedasticity. State the consequence of heteroscedasticity in a simple linear regression model. Explain two different methods to detect the presence of heteroscedasticity in a regression model.	[2+2+6]
6.	a) b)	In the regression model $y_i = \alpha + \beta x_i + u_i$, if the sample mean \overline{x} is zero, show that $\operatorname{cov}(\hat{\alpha}, \hat{\beta}) = 0$, where $\hat{\alpha} & \hat{\beta}$ are the least square estimators of $\alpha & \beta$. Given a sample of 50 observations and 4 explanatory variables, what can you say about the auto- correlation if the computed Durbin-Watson 'd' values are i) $d = 1.05$ ii) $d = 1.40$ iii) $d = 2.5$ iv) $d = 3.97$ [Given $d_L = 1.378$, $d_u = 1.721$ for 50 observation and 4 explanatory variables]	[6+4]

7. In the simple linear regression with intercept, show that the OLS estimator of the slope coefficient is BLUE. [10]

_____ × _____